
6 My Guitar Shop Exercises for Murach’s MySQL (2nd Edition)

Chapter 4

How to retrieve data
from two or more tables

Exercises
1. Write a SELECT statement that joins the Categories table to the Products table and

returns these columns: category_name, product_name, list_price.

Sort the result set by category_name and then by product_name in ascending
sequence.

2. Write a SELECT statement that joins the Customers table to the Addresses table and
returns these columns: first_name, last_name, line1, city, state, zip_code.

Return one row for each address for the customer with an email address of
allan.sherwood@yahoo.com.

3. Write a SELECT statement that joins the Customers table to the Addresses table and
returns these columns: first_name, last_name, line1, city, state, zip_code.

Return one row for each customer, but only return addresses that are the shipping
address for a customer.

4. Write a SELECT statement that joins the Customers, Orders, Order_Items, and
Products tables. This statement should return these columns: last_name, first_name,
order_date, product_name, item_price, discount_amount, and quantity.

Use aliases for the tables.

Sort the final result set by last_name, order_date, and product_name.

5. Write a SELECT statement that returns the product_name and list_price columns
from the Products table.

Return one row for each product that has the same list price as another product.
Hint: Use a self-join to check that the product_id columns aren’t equal but the
list_price columns are equal.

Sort the result set by product_name.

6. Write a SELECT statement that returns these two columns:

category_name The category_name column from the Categories
table

product_id The product_id column from the Products table

Return one row for each category that has never been used. Hint: Use an outer join
and only return rows where the product_id column contains a null value.

7 My Guitar Shop Exercises for Murach’s MySQL (2nd Edition)

7. Use the UNION operator to generate a result set consisting of three columns from the
Orders table:

ship_status A calculated column that contains a value of
SHIPPED or NOT SHIPPED

order_id The order_id column

order_date The order_date column

If the order has a value in the ship_date column, the ship_status column should
contain a value of SHIPPED. Otherwise, it should contain a value of NOT SHIPPED.

Sort the final result set by order_date.

